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Rate of change of a quantity

Density of x (amount of 
x per unit volume)
x = specific x (x per unit 
mass)

Total rate of change of X 
in the co-moving volume 
V.

Note: points on the 
boundary of the volume 
V(t) are moving at the 
local streaming velocity v.



Reynolds transport theorem
Rate of change of 
X with V fixed

Rate of change of X 
due to the motion of V

Use the divergence 
theorem

Use the relation 
between total and 
partial derivatives

Physically, the amount of X in a comoving V can 
only change by diffusive flux and production



Eulerian and Lagrangian balance equations
Combining the last three lines, we have

Since these apply for ANY volume, including a 
vanishingly small one, they also apply at a point

Eulerian derivative

Lagrangian derivative

Diffusive transport

Production



Balance equations

Mass balance
x = specific mass = 1

OR x = specific volume = 1/r

Exercise: verify these equations

Momentum balance
x = specific momentum = v

Internal energy balance
x = specific internal energy = u



Entropy balance

Entropy balance
x = specific entropy = s

Local equilibrium – Gibbs equation
We need another equation for the 
entropy.

Equilibrium thermodynamics
Reversible change – total (extensive)

Reversible change – local (material element 
with fixed M)

Rate of change 
of entropy 
density at a 
fixed point

Rate of change of 
entropy density 
due to convection

Rate of change of 
entropy density at 
a co-moving point

Entropy 
flux

Entropy 
production



Entropy balance

Entropy change
For each small material element, assume 
that the entropy change obeys the Gibbs 
equation.

Entropy change
Now eliminate the total derivative of 
the entropy.

Use the energy and mass balance 
equations in the right hand side.



Entropy balance

Entropy change
Equate the two expressions for the rate of entropy change

Now express the lhs in terms of a divergence and non-divergence term so that the 
entropy flux and entropy production can be identified.



Entropy balance

Heat flux
The heat flux term can be written in terms 
of a simple divergence by using

Pressure tensor
The pressure can be divided into 
equilibrium and nonequilibrium parts

So the thermodynamic work due to 
deformation can also be simplified as

Nonequilibrium 
pressure

Local 
equilibrium 
pressure



Entropy balance

Entropy flux and entropy production
Substitute the previous results into the entropy balance equation

This allows us to identify

Entropy flux

Entropy production

= 0

Entropy transfer Entropy production 1/T x Reversible work



Linear constitutive equations

Thermodynamic fluxes and forces
The entropy production is in the form of a bilinear function of the thermodynamic 
fluxes and their driving forces

Linear constitutive relations
Assume that the fluxes are linear functions of the thermodynamic forces



Linear constitutive equations

Curie’s principle
For isotropic materials, the material 
property tensors must be isotropic 
tensors.
The fluxes are either polar or axial 
vectors.
These two facts limit couplings in the 
linear regime, so that fluxes can only 
depend on thermodynamic forces with 
the same tensor characteristics.
Vectors couple to vectors
Scalars couple to scalars – etc.

Fourier’s law – heat flow
The heat flux can only depend on the 
temperature gradient (one component).



Linear constitutive equations

Viscous flow
The entropy production due to viscous 
flow can be further decomposed into its 
irreducible components:

Where we have omitted the 
antisymmetric part.

Newton’s law – shear viscosity
Traceless symmetric velocity gradient 
corresponds to shear deformation:

Stokes’ law – bulk viscosity
Scalar velocity gradient corresponds to 
bulk (isotropic) deformation:


