Introduction to fluctuation x-ray scattering: A new way to probe disordered structure at advanged light sources

Andrew V. Martin School of Science, RMIT, Australia

Outline

• The "structure problem" for disordered materials

• Structure and Scattering

• What is fluctuation scattering and how is it done?

• Recent applications / case studies

1) The structure problem for disordered materials

13/6/2029MSQ - Scattering School

Degrees of order

We live in a disordered world!

Mystery of the glass transition 14 12 12 log (viscosity in poise) log (viscosity in Pa·s) 108 6 6 4 2 0 2 terphenyl m, o-fluorotoluene chlorobenzene 0.8 1.0 0.20.6 0.4Tg/T

Metallic glass

WNEWS 22/8/17

Lipidic membrane materials

/Proteins

Metallic glass ceiling may be smashed with improved technique to treat contaminated water

Cubic – Pn3m

Amorphous Materials

Glassy carbon (High T crucibles; electrochemistry)

Airborne particles (soot) (pollution/respiratory health)

Liquids

Orientation vs Structural disorder

Orientation disorder of ordered particles/crystal domains

Particles in solution

SMSQ - Scattering School

Structural Heterogeneity (+ orientational disorder)

A thought experiment

Imagine you had an amazing microscopy technique that could measure all the atoms in a disordered structure in 3D.

A 3D image of all the atoms should tell you everything, right?

BUT every time you put in a new sample of the same material you see a different structure!

So what would we do with the images?

Common structural information:

- Same density
- Same bond distances

- Close neighbors have certain angles
- *n*-particle correlation functions

2) Structure & Scattering

13/6/202**\$**MSQ - Scattering School

Structure and scattering

13/6/2021

Structure and scattering in 3D

Intensity measured on the detector is a curved slice through $|F(q)|^2$ (Ewald sphere)

Depends on sample orientation

13/6/2021

Crystals and powders

Crystallography

Electron Density $\rho(r)$

Pair distribution function $g^{(2)}(r)$

Overview of scattering techniques

Techique	Sample	output
Crystallography	Large well-ordered single crystal	3D electron density
Powder diffraction	Ensemble of small well- ordered crystals	Atomic model
Powder diffraction	Disordered crystals	Pair distribution
SAXS/WAXS	Proteins, liquids, soft matter, colloids	Particle size, Pair-distribution mesoscale lattice parameters
Electron microscopy		

"The structure problem" revisited

Crystals and powders

Crystal \rightarrow 3D structure

?

Powder → 1D pair distribution

$< I(q) > \propto N$ (Number of domains in the beam)

$$\sqrt{\delta I^2(\boldsymbol{q})} \propto \sqrt{N}$$

13/6/2021

SMSQ - Scattering School

The real experiment: Diffraction

Large beam

Fourier Transform

Small beam at position α

 $\propto g^{(2)}(r)$

Bond distance only

 $\propto g_{\alpha}^{(2)}\left(\boldsymbol{r}
ight)$

Fourier Transform

Bond distance & orientation

<u>But also sample orientation</u> <u>& not ensemble statistics</u>

13/6/2021

16

SMSQ - Scatterin

Pair-distribution function (PDF) - g⁽²⁾(r)

2) Structure & Scattering

13/6/202**\$**MSQ - Scattering School

Fluctuation x-ray scattering

Angular variations in intensity

From an ensemble of data (typically 1000s) → Angular intensity correlation function

$$C(q,q',\theta) = \int d\phi \, \langle I_{\alpha}(q,\phi+\theta)I_{\alpha}(q',\phi) \rangle_{\alpha}$$

13/6/2021

What does a correlation measure?

$$\rho(\mathbf{r}) = \sum_{i=0}^{N} \rho_i(\mathbf{r}) \qquad F(\mathbf{q}) = \sum_{i=0}^{N} f_i(\mathbf{q}) e^{i\mathbf{q}\cdot\mathbf{R}_i}$$

Sum over atoms

$$I(q) = |F(q)|^2 = \sum_{i}^{N} \sum_{j}^{N} \dots$$

Sum over atom pairs

$$I(\boldsymbol{q})I(\boldsymbol{q}') = \sum_{i}^{N} \sum_{j}^{N} \sum_{k}^{N} \sum_{l}^{N} \dots$$

Double sum over atom pairs

Example q-space correlation function

History of fluctuation scattering

Recent growth (2010-present)

Colloids - Wochner, PNAS. 2009, 106, 11511 Liquid crystals Kurta ; Martin Nanoparticles (Lehmkuler...)

13/6/2021

Virus imaging Kurta et al. Metallic Glasses Liu et al. Disordered carbons Martin et al.

SMSQ - Scattering School

Fluctuation Microscopy

Treacy et al. Science, (2012) 335, 950

Variance measurements used to constrain disordered structures of amorphous silicon

13/6/2021

Angular symmetry

Wochner, PNAS. 2009, 106, 11511

SM

SMSQ - Scattering School

2π

Angular Fourier Analysis - example

Liu et al. PRL 110, 205505 (2013)

Metallic Glasses

13/6/2021

SMSQ - Scattering School

3D imaging

Kurta et al. PRL 119, 158102 (2017) Donatelli PNAS (2015) 112, 10286–10291 (Theory)

13/6/2021

SMSQ - Scattering School

Pair-angle distribution function (PADF)

A.V.Martin, IUCrJ, 4, 24 (2017)

$$C(q,q',\theta) = \int d\phi \, \langle I_{\alpha}(q,\phi+\theta)I_{\alpha}(q',\phi) \rangle_{\alpha}$$

$$\Theta(r,r',\theta) = \tilde{g}^{(2)}(r,r',\theta) + g^{(3)}(r,r',\theta)$$

$$+ g^{(3)}(r,r',\pi-\theta) + g^{(4)}(r,r',\theta)$$

$$\Gamma' = \Phi$$

Bulk 3D structure Assumes sample has no preferred orientation to beam axis

like a "Patterson function" for correlation analysis

13/6/2021

Fourier analysis in spherical coordinates

Plane-wave expansion

$$e^{i\boldsymbol{k}\cdot\boldsymbol{r}} = \sum_{l=0}^{\infty} (2l+1)i^l j_l(kr) P_l(\hat{\boldsymbol{k}}\cdot\hat{\boldsymbol{r}})$$

 $P_l(x)$ is a Legendre polynomial : $\theta \rightarrow l$ Kam *Macromolecules* (1977) 10, 927

 $j_l(x)$ is a spherical Bessel function : $q \rightarrow r$

Lanusse et al. A&A (2012), 540, A92.

Input:	$C(q,q',\theta)$
Step 1:	$\theta \rightarrow l$
Step 2:	$\begin{array}{c} q ightarrow r \ q' ightarrow r' \end{array}$
Step 3:	$l \rightarrow \theta$
Output:	$\Theta(r,r', heta)$

Visualising 3-body correlations

Self-assembled lipid materials

Applications: drug-delivery, protein crystallization

Monoolein:Water phase diagram

Membrane protein crystallization

13/6/2021

(Dis)order in self-assembled lipid structures

Monoolein:buffer hexagonal phase, doped with DOPC

Beamline: SAXS beamline, Australian Synchrotron

Martin et al. Commun. Materials 2020, 1, 40.

13/6/2021

SMSQ - Scattering School

Electron diffraction – activated carbon

SMSQ - Scattering School

PADF of activated carbon

Martin et al. Small 2020, 16, 2000828

Can you have too many domains in the beam?

Binns et al. IUCrJ (2022). 9, 231-242

Jack Binns

Yes... the data becomes sensitive to preferred orientation \rightarrow 'micro-texture analysis'

$$R = N \frac{P_{orientation}}{P_{nano}}$$

R>>1 orientation dominatesR<<1 nanostructure dominates

P_{χ} = angular power spectrum N is the number of crystals per exposure

12/7/2022

RMIT Physics Seminar

Looking for something that we haven't seen before

Potential applications

Powder diffraction

Synchrotron - nanoscale

Colloids

Self-assembly

X-ray free-electron lasers

Liquids / proteins / phase transitions

Adams et al. Crystals 2020, 10, 724

Binns et al. IUCrJ (2022). 9, 231–242 Martin et al. Commun. Mater. (2020) 1, 40

Amorphous solids / glasses **Electron Microscopy** - Atomic scale

Bojesen et al. J. Phys. Mater. 3 (2020) 044002

12/7/2022

RMIT Physics Seminar 36

Thank you for listening!

Fourier analysis in spherical coordinates

Plane-wave expansion

$$e^{i\boldsymbol{k}\cdot\boldsymbol{r}} = \sum_{l=0}^{\infty} (2l+1)i^l j_l(kr) P_l(\hat{\boldsymbol{k}}\cdot\hat{\boldsymbol{r}})$$

 $P_l(x)$ is a Legendre polynomial : $\theta \rightarrow l$ Kam *Macromolecules* (1977) 10, 927

 $j_l(x)$ is a spherical Bessel function : $q \rightarrow r$

Lanusse et al. A&A (2012), 540, A92.

Input:	$C(q,q',\theta)$
Step 1:	$\theta \rightarrow l$
Step 2:	$\begin{array}{c} q ightarrow r \ q' ightarrow r' \end{array}$
Step 3:	$l \rightarrow \theta$
Output:	$\Theta(r,r', heta)$

Why scattering?

Require wavelength smaller than the structure \rightarrow X-rays, electrons, Neutrons

X-rays & Neutrons	weakly interacting	single scattering
Electrons	strongly interacting	multiple scattering

Often its not possible to form a direct 3D image of the structure at these length scales.

Instead, characterize structure with diffraction.

