# Small-angle and ultra-smallangle neutron scattering

### **An introduction**

#### **Rico Tabor**

#### **Advanced Scattering and Microscopy School**

SM2 Meeting, Monash University, 13<sup>th</sup> July 2022

#### Part 1 - What does it do?



- Subatomic particle with no charge
- Can behave as particle or wave (duality)
- Therefore I can scatter it!



- How to make neutrons (in large enough quantities to be useful):
- 1) Spallation
   Proton beam is accelerated and fired at heavy metal target in pulses, dislodging neutrons
- 2) Nuclear fission Neutrons released during decay of unstable heavy nucleus, causing chain reaction within radioactive sample

Both are used in research to generate neutrons for scattering experiments





- How to detect scattered neutrons?
- Current best technology is the <sup>3</sup>He<sub>2</sub> element detector
- Array of tubes filled with <sup>3</sup>He<sub>2</sub> and CF<sub>3</sub> gases
- Incident neutron causes the reaction:

 $^{1}n_{0} + {}^{3}He_{2} \rightarrow {}^{1}H_{1} + {}^{3}H_{1} + 765 \text{ keV}$ 

 The proton and triton are released with high kinetic energy, and ionise the CF<sub>3</sub> gas. These CF<sub>3</sub><sup>+</sup> ions are detected capacitively and thus turned to a current. The 2 after <sup>3</sup>He refers to the proton number, not the number of nuclei!!



- Sir Marcus Laurence Elwin Oliphant
- Born in 1901 in Adelaide
- Eminent nuclear physicist and humanitarian
- Discovered <sup>3</sup>He whilst bombarding deuterons with more deuterons
- This also happened to be the first demonstration of nuclear fusion
- Worked on Manhattan project in WW2
- Founding Professor of ANU
- Died in 2000 (age 98) in Canberra









- ISIS, near Oxford, UK
- Spallation source
- LOQ ToF instrument







- ILL, Grenoble, France
- Reactor source
- D22 small-angle diffractometer

• Bragg Institute (Lucas Heights, nr Sydney)



- Reactor source
- Neutron science and medical isotope production

- Neutrons are scattered by nuclei of atoms
- Scattered intensity as a function of angle gives information on spatial arrangement and interactions between scatterers
- Size range probed 1-100 nm

$$Q = \frac{4\pi}{\lambda} sin\frac{\theta}{2}$$



- Key quantities are scattered intensity *I*, and scattering vector, *Q*
- Think of Q as inversely proportional to size: small Q = big stuff, big Q = small stuff.

- Q: If neutrons are scattered by nuclei of atoms, where does the contrast come from? (c.f. refractive index for light)
- A: Different nuclei scatter differently, because of a property called scattering length
- This varies randomly with atomic number:



• Most important point: H and D scatter really differently, so deuteration provides contrast.

 In general, a contrast (difference in scattering length density) of less than 1.5x10<sup>10</sup> cm<sup>-2</sup> is poor contrast.

|                         | Nucleus            | $b/(10^{-12} \text{ cm})$ | Compound             | $ ho/(10^{10}~{ m cm}^{-2})$ |  |
|-------------------------|--------------------|---------------------------|----------------------|------------------------------|--|
|                         | <sup>1</sup> H     | -0.374                    | H <sub>2</sub> O     | -0.560                       |  |
|                         | <sup>2</sup> H (D) | 0.667                     | $^{2}H_{2}O(D_{2}O)$ | 6.356                        |  |
|                         | <sup>12</sup> C    | 0.665                     | toluene              | 0.941                        |  |
|                         | <sup>16</sup> O    | 0.580                     | D-toluene            | 5.662                        |  |
|                         | <sup>14</sup> N    | 0.936                     | TX-100               | 0.519                        |  |
|                         | <sup>32</sup> S    | 0.285                     | АОТ                  | 0.542                        |  |
| O<br>Na <sup>+</sup> -C |                    |                           | ~                    |                              |  |

- Take an emulsion droplet (water, surrounded by stabiliser in oil)
- Or a (nano)particle with a shell of polymer





core contrast:  $\rho_1 \neq \rho_2 = \rho_3$ 



shell contrast:  $\rho_1 = \rho_3 \neq \rho_2$ 



drop contrast:  $\rho_1 = \rho_2 \neq \rho_3$ 

- Rationalising detector patterns: radial averaging
- Angle on detector calculated by trig.



- Angle then converted to q, and intensity I plotted against q.
- Usually use log/log scales to make things easier to see.

• Take an emulsion droplet (water, surrounded by stabiliser in oil)





- Nice data! But what does it tell us?
- Need to apply a quantitative model
  - Global expression  $I(Q) = \phi_p \cdot (\rho_p \rho_s)^2 \cdot V_p \cdot P(Q, R) \cdot S(Q) + B_{inc}$

• Form of a sphere 
$$P(Q,R) = \left[\frac{3(\sin(QR) - QR \cdot \cos(QR))}{(QR)^3}\right]^2$$

• Form of a core-  
shell sphere 
$$P(Q, r) = \frac{16\pi^2}{9} \left[ (\rho_h - \rho_s) 3r_d^3 \left( \frac{\sin(Qr_d) - Qr_d \cos(Qr_d)}{(Qr_d)^3} \right) - 3r_c^3 \left( \frac{\sin(Qr_c) - Qr_c \cos(Qr_c)}{(Qr_c)^3} \right) \right]^2 + \left[ (\rho_c - \rho_s) 3r_c^3 \left( \frac{\sin(Qr_c) - Qr_c \cos(Qr_c)}{(Qr_c)^3} \right) \right]^2$$

• Structure factor 
$$S(Q) = 1 + \left[\frac{N_p k_B T \chi}{1 + Q^2 \xi^2}\right] \qquad S(Q) = \frac{1}{[1 - N_p] \cdot f(r_d, \phi_p)}$$

- Things I can learn from neutron scattering:
  - Size of objects
  - Shape (sphere, ellipsoid, rod, fractal, worm, sheet...)
  - Charge
  - Volume fraction
  - Interaction potential/pair potential
  - Porosity
  - Large scale structuring
  - Etc.....
  - With careful experimental design, I can learn almost anything I want about hard and soft structures from 1-100(00) nm!

MANY YEARS AGO...

1. Soft Matter **5** (2009) 78 2. PCCP **11** (2009) 9772

3. Soft Matter **5** (2009) 2125 4. JCIS **344** (2010) 447



#### ISN'T NEUTRON SCATTERING SLOW?





SMacLab Soft Materials and Colloids

19

#### ISN'T NEUTRON SCATTERING SLOW?

- Time-slices start with 20 ms duration!
- Binning 2–3 runs together to improve signal:noise
- Watch soft matter evolution in real time!
- Fast can be very useful, but sometimes slow is good...



**SMaCLab** 

Soft Materials and

#### **RHEO-SANS**



#### RHEO-SANS

- Strong level of alignment for C18:1 worms
- Quantify using annular and sector analysis
- Annulus shows degree of alignment with shear field as a function of shear rate
- Sector analysis shows effective form factor parallel and perpendicular to shear field





Reference: Rehm, C.; de Campo, L.; Brûlé, A.; Darmann, F.; Bartsch, F.; Berry, A., Design and performance of the variable-wavelength Bonse–Hart ultra-small-angle neutron scattering diffractometer KOOKABURRA at ANSTO. Journal of Applied Crystallography 2018, 51 (1), 1-8.

\*Many thanks to Dr Liliana de Campo and Dr Jitendra Mata (ANSTO) for the slides and information!

#### **USANS** Measurements



Sample optimisation: Scattering Strength, Measurement time, Large cells

Sample must be stable during USANS scan





Image from Muir et al., Phys. Chem. B 2012, 116.3551-3556

Point-by-point method

#### USANS Instrument Characteristics: operates

#### in 2 wavelengths

| Instrument<br>characteristics                     | <u>High-Intensity</u><br><u>Mode</u>    | High-Resolution<br>Mode                    |
|---------------------------------------------------|-----------------------------------------|--------------------------------------------|
| Wavelength $\lambda$                              | 4.74 Å                                  | 2.37 Å                                     |
| Premonochromator                                  | HOPG(002) at $\theta_B$<br>= 45°        | HOPG(004) at $\theta_{\rm B} = 45^{\circ}$ |
| Channel-cut<br>crystals                           | Si(111) at $\theta_{\rm B} =$ 49.2°     | Si(311) at $\theta_{\rm B}$ = 46.4°        |
| Full Darwin width,<br>2∆θ <sub>D</sub>            | 21 μrad                                 | 5.04 µrad                                  |
| Minimum<br>momentum<br>transfer, q <sub>min</sub> | 3 × 10 <sup>-5</sup> Å                  | 1.5 × 10 <sup>-5</sup> Å                   |
| Vertical q<br>resolution, ∆q <sub>ver</sub>       | 0.0586 Å                                | 0.117 Å                                    |
| Wavelength resolution, $\Delta\lambda/\lambda$    | 3.5%                                    | 2.0%                                       |
| Neutron flux (beam 5 cm × 5 cm)                   | 215000 cm <sup>-2</sup> s <sup>-1</sup> | 17500 cm <sup>-2</sup> s <sup>-1</sup>     |
| Noise-to-signal<br>ratio (empty beam)             | 1.1 × 10 <sup>-6</sup>                  | 1.3 × 10 <sup>-5</sup>                     |



#### USANS sample Environments







USANS cell Standard: 1.5ml



SANS cell: Standard: 0.35ml



Rheometer



High field magnet with cryostat

