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Multicomponent fluids

Balance equations

An extra equation is required — mass
fraction balance for each component

Extra terms are included to account for
body forces (e.g. gravity)

New flux — diffusive flux of component
K
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Multicomponent fluids

Gibbs equation

An extra term involving the chemical Tﬁ — du _ P dp _ Z“k dex
' dt dt p?dt
potential

Rate of change of the entropy includes
extra terms

ds 1 T . p 1 <&



Multicomponent fluids

Entropy derivative

« After substituting for the heat flux and the pressure tensor, we find

Divergence of entropy flux

o))+

_ - Z J,. - ( ( ) Fe) Extra term in entropy production

ds _
Pat =

1
J VT — THT Vv

« The entropy flux has changed and there is an extra term in the entropy
production due to diffusive transport



Multicomponent fluids

Constitutive equations Constitutive equations
* The linear transport equations are now * The linear transport equations
now show coupling —
Flux due to Flux due to temperature trati dient and
concentration  gradient — thermal concentration gra_ lentan
gradient diffusion, Soret effect temperature gradient are both
Ji = —pDVe¢y — peieaD'VT vectorial
/ Ot ., » Note the primed heat flux vector
Jg=—=AVI —py der I'D"Vey (allows concentration gradient
Heat flow due  Heat flow due to instead of chemical potential
to temperature  concentration gradient — gradient as thermodynamic force)

gradient Dufour effect



Spin angular momentum transport

Balance equations — single component Spin angular momentum
* Molecules with a significant moment of « Total angular momentum can be
inertia — rod like, liquid crystals, colloidal split into two parts — orbital and
etc. spin
 The balance equations now include total M=L+S
angular momentum transport
pd_V — _V.P 4 pF€ . Th.is leads to an equation for the
dt spin angular momentum
dM S
p— =~V Qu + oGy pr =V Q-2P" + pI'"



Spin angular momentum transport

Balance equations — spin angular Spin relaxation
momentum . Linear momentum converts to spin
« The spin angular momentum angular momentum via the orbital
balance equation now has two angular momentum
source terms .

Note: antisymmetric part of the
* One due to applied torques pressure tensor is important!

* One due to conversion of orbital
angular momentum to spin angular

momentum
S Sou;ce termse

Spin diffusion



Spin angular momentum transport

Entropy production

« Extra terms corresponding to spin relaxation and diffusion Thermodynamic force
for spin relaxation

111 ts ts a /
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Electropumping in nanofluidics

Extended Navier-Stokes equations .
applied body force

9. 9%, 59, —

Y r 2r
ry (no+n)3y + 21 9y

o 9% 92, o,
= (Co+ ) —om, (2 420, ) + pI¢
8t 0y? oy "

applied torque
Includes spin angular velocity for extended molecules

Translational and angular velocities are coupled!



Planar geometry — SPCE water

hydrophobic wall

£ ¢— hydrophilic wall

electric field
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S. De Luca, B. D. Todd, J. S. Hansen and P. J. Daivis, J. Chem. Phys., 2013, 138, 154712.



Carbon nanotube — SPCE water

Functionalize with COOH to
create hydrophobic surface.

Rotating Electric Field
in y-z Plane

Hope that experimentalists can

do it!
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Carbon nanotube — concentric geometry
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« Rotating radial electric field.

* Flow rate decreases with increasing functionalization due to crowding.
« Compromise between stick b.c. and crowding to optimize flow rate.
« Pumping efficiency is better than Poiseuille (pressure driven flow).

D. Ostler, S. K. Kannam, F. Frascoli, P. J. Daivis and B. D. Todd, Langmuir, 2019, 35, 14742-14749. '



Anisotropic heat flow in strongly sheared fluids

Motivation

« Heat flow in materials that become
highly anisotropic due to strong shear
(e.g. polymer melts)

« Nanofluidic flows - nonlinear coupling,
nonlocal response

« We assume;

J, =J (VT,Vv,VVv)

q




Anisotropic heat flow in strongly sheared fluids

Motivation Constitutive equation

« Heat flow in materials that become Expand the flux in powers of the
highly anisotropic due to strong shear thermodynamic forces
(e.g. polymer melts) - first order in VT

 Nanofluidic flows - nonlinear coupling, _ inear/bilinear in Vv and VVv

local
nonlocal response - up to 6th rank isotropic property tensors

Planar velocity field: Vv = jiy(y)
With this velocity field, we find

« We assume:

J, =J (VT,Vv,VVv)

q a7 . .0y .
Jq :—}\«eﬁcVT+§a—yl+2§]/a—yJ

Daivis and Coelho, PRE 61, 6003 (2000) '



Anisotropic heat flow in strongly sheared fluids

Simple planar shear

Heat flux
oy oy - Almost perfect linear velocity
Jq - _A‘eﬁVT + ga_yl + 25)/ a_y J Transverse profile
. gﬁste :ObV; - Curvature is zero
ith Heat flow in flow direction coupling
Wi driven by strain rate curvature between
strain rate
and its
N _ Curvature
.2 .
A+3A4y Ay 0
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Anisotropic heat flow in strongly sheared fluids

Computation of the heat flux — diffusive flux of internal energy

Kinetic part Configurational part

Zuc5 (r—r, ——ZZ [Vi—v(r)]ﬁ5(r—ri—lrij)d}t
/' \ e

Internal
energy

thermal

of particle i of"s;it";gél Integrate over a small volume element to
compute the volume averaged heat flux
OR

Integrate over a small area element to
compute the surface averaged heat flux



Anisotropic heat flow in strongly sheared fluids

Molecular dynamics simulations X

Lg

heat flow between two walls with
different T (e.g. 0.8 — 1.2) — no
flow Ly

determine zero shear thermal

y

- I Liherm

conductivity

Simple purely repulsive (WCA)
atomic LJ fluid at liquid density

Atomistic, thermostatted walls

System description

Sec 1
3 Lyail
‘J\



Anisotropic heat flow in strongly sheared fluids

Results
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Anisotropic heat flow in strongly sheared fluids

Results — T dependence
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Anisotropic heat flow in strongly sheared fluids

Results — planar shear (moving walls)
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Anisotropic heat flow in strongly sheared fluids

Results — dependence on shear rate
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Smith, Daivis and Todd, J.Chem.Phys. 150, 064103 (2019) '
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